Enzyme regulation in neuroblastoma cells in a salts/glucose medium: induction of ornithine decarboxylase by asparagine and glutamine.
نویسندگان
چکیده
L-Asparagine is necessary and sufficient for the maximal induction of ornithine decarboxylase (ODC) (L-ornithine carboxy-lyase, EC 4.1.1.17) activity in confluent N18 mouse neuroblastoma cells in a salts/glucose medium; L-asparagine also induces maximal ODC activity when added to a tissue culture medium. L-Glutamine is about one-half as effective as asparagine. Cholera toxin and agents that are known to raise intracellular cyclic AMP concentrations have no effect on the induction of ODC activity unless suboptimal concentrations of asparagine are present in the salts/glucose medium. Whereas actinomycin D does not inhibit induction of ODC activity by asparagine, it inhibits the induction of ODC activity in association with cyclic AMP. In the salts/glucose medium, the rate of loss of ODC activity following the inhibition of protein synthesis by cycloheximide or puromycin depends upon the presence or absence of asparagine; loss is rapid only in the absence of asparagine and does not appear to be related to the inhibition of protein synthesis. These results are discussed in the context that the overlay of the growth medium tends to mask the minimal requirements for enzyme induction, because the composition of the medium defines: (a) the requirements for the induction of ODC activity; (b) the effect, or lack of effect, of cyclic AMP (and of inducers of intracellular cyclic AMP) on the induction of ODC activity; (c) the effect, or lack of effect, of actinomycin D on the induction of ODC activity; and (d) the action of puromycin and of cycloheximide on the rate of loss of ODC activity. It will be interesting to determine whether these results are uniquely applicable to ODC, whether many of the reactions attributed to cyclic AMP in the literature may be mediated by asparagine and glutamine, and whether actinomycin D, cycloheximide, and puromycin can be relied upon to differentiate between transcriptional and post-transcriptional control.
منابع مشابه
Molecular mechanisms of the synergistic induction of ornithine decarboxylase by asparagine and glucagon in primary cultured hepatocytes.
In primary cultures of adult rat hepatocytes maintained in a salts/glucose medium, a more than 100-fold increase in ornithine decarboxylase (EC 4.1.1.17) activity was caused by asparagine and glucagon in a synergistic manner. The synthesis rate of ornithine decarboxylase was determined by [35S]methionine incorporation into the enzyme protein, and the amount of ornithine decarboxylase-mRNA was m...
متن کاملStudies on the role of protein synthesis and of sodium on the regulation of ornithine decarboxylase activity.
The minimum requirements for eliciting or enhancing ornithine decarboxylase activity (EC. 4.1.1.17); L-ornithine carboxylase) in neuroblastoma cells incubated in salts-glucose solutions have been investigated. These incubation conditions permit the study of changes in ornithine decarboxylase activity independently of the growth-associated reactions that occur in cell culture media (Chen, K.Y. a...
متن کاملMechanism of regulation of ornithine decarboxylase gene expression by asparagine in a variant mouse neuroblastoma cell line.
We have developed a clonal variant, named DF-40, from the N2a mouse neuroblastoma cell line, which has the ornithine decarboxylase (L-ornithine carboxylase, EC 4.1.1.17, ODC) gene amplified. When DF-40 cells were maintained in a simple salt glucose medium (e.g. Earle's blanced salt solution), L-asparagine alone was sufficient to induce a maximal increase in ODC activity. The increase in ODC act...
متن کاملMetabolism of polyamines by cultured glioma cells. Effect of asparagine on gamma-aminobutyric acid concentrations.
The activity of ornithine decarboxylase (EC 4.1.1.17) increased in confluent cultures of glioma C6BU-1 cells 3 h after adding a complete serum-containing medium, and was maximal 5 h later. The activity of S-adenoxyl-L-methionine decarboxylase (EC 4.1.1.50) increased soon after addition of the complete medium to the cells, and reached its peak after 11 h. The activity of diamine oxidase (EC 1.4....
متن کاملStereo-Specific Transcript Regulation of the Polyamine Biosynthesis Genes by Enantiomers of Ornithine in Tobacco Cell Culture
Background: Ornithine (Orn) plays an essential role in the metabolism of plant cells through incorporation in polyamines biosynthesis, the urea cycle and nitrogen metabolism. Physiological response of the plant cells to its two enantiomers have not been widely investigated yet.Objectives: This study aimed to evaluate effect of ornithine enantiomers on exp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 74 9 شماره
صفحات -
تاریخ انتشار 1977